
MARYLAND
COLLEGE PARK CAMPUS

The h-p Version of the Finite Element Method
Co in the Plate Modelling Problem

(% by

I. Babudkao iC

L. Li 19

Technical Note BN-1115

November 1990

"~ 1 "qT-IT JT' 20 - 9"-DCA LSO ;IN(-
4~ T= 0 OLO

91 2 '



SECURITY CLASSIFICATION Of TWIS PAGE "#A Datem ogeiet*

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO 2. RECIPIENT-S CATALOG NUMBER

Technical Note BN-11I5

4. TITLE (and Subtitle) 1. TYPE OF REPORT & PERIOD COVERED

The h-p Version of the Finite Element Method Final Life of Contract

in the Plate Modelling Problem "l. PERFORMING ORG. REPORT NUMBER

7. AUT4OR(e) S. CONTRACT OR GRANT NLMBER(e)

I. Babuska' and L. Li 1ONR/N00014-90-J-1030
NSF/CCR-88-20279

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA A WORK UNIT NUMBERS
Institute for Physical Science and Technology
University of Maryland
College Park, MD 20742

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DAT

Department of the Navy November 1990

Office of Naval Research 13. NUMBER OF PAGES

Arlington, VA 22217- 16
14 MONITORING AGENCY NAME A ADDRESS(I/ dilferent from Con'troiind Office) IS. SECURITY CLASS. (of this report)

IS.. OECL ASSI FICATIONi DOWN GRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of ahs Report)

Approved for public release: distribution unlimited

17. DISTRIBUTION STATEMENT (of te ab.sUact entered in Block 20. If diltent om Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on Power.* side If 1.cee.rY and Identify bY block ,., -)

Plates, Reissner-Mindlin model, h-p verion of finite element method

20. ABSTRACT (Continue an reverie side It necesar end Idenify hr block null)Se)

Abstrac.. The paper ad-resses the problem of plate modeling within the

fraework of the h-p version of the finite element method. A natural

hierarchy of models is constructed. The lowst member of the hierarchy is

the well kon ReIlssner-Mlindlin model. It Is shown that higher degree

elements do not show any locking effects for the models under considerstIon.

DD , F 1473 EDITION O I NOV s IS ODSOLETE

S/N 0102-LP. 014-6601- IECURITV CLASSIPICATION OF THIS PAGE (V~n Dole It"E#-0



The h-p version of the finite element method in the plate modeling problem

by

I. Babuska , L. LI

MD90-40-IBLL

TR90-40

0

Institute for Physical Science and Technology and Department of
Mathematics, University of Maryland, College Park, Maryland, 20742. The work
of this author was partially supported by the Office of Naval Research Grant
N00014-90-J-1030 and by the National Science Foundation grant CCR-88-20279.

00

Department of Mathematics, University of Maryland, College Park,
Maryland, 20742, and Department of Mathematics, Fudan University, Shanghai
2 00 20, People's Republic of China.



Abstract. The paper addresses the problem of plate modeling within the

framework of the h-p version of the finite element method. A natural

hierarchy of models is constructed. The lowest member of the hierarchy is

the well known Reissner-Mindlin model. It is shown that higher degree

elements do not show any locking effects for the models under consideration.

Key words: Plates, Reissner-Mindlin model, h-p version of finite element

method

1. Introduction.

The h-p version of the finite element method was developed during the

last 10 years. The h-p version programs MSC/PROBE, FIESTA are on the market

and the h-p version research code STRIPE (Aeronautical Institute of Sweden)

is used in industry as well.

The h-p code provides large flexibility. It allows hierarchical

modeling of the plates and shells, avoids the locking problems and provides

tools for effective quality control.

This paper addresses a natural hierarchical modeling which the h-p

version provides, including the Reissner-Mindlin model. In addition it shows

that the h-p version avoids the problem of locking which arises in the

standard finite element method.

2. The plate problem and its hierarchical models. or
d d b h

Let fl = {x = (xI , x2 ' x3 )eR
3 , (xX) c - x < be the

three dimensional plate w with the thickness d. Further we let S = {x e
d d = 3 +dR (x x ) e - < < d} and R { x E R (xl'x2) e W x3 =

1l1 E2 3 2f - i2 3 2

"whcr.e r denotes the boundary of w.

... Lllty Codes
lei Avail ald/o.- -

r:UA"Y - Special

1119 ko r

-- rm rm I 111 I I L ag I



We will consider the three dimensional elasticity problem on Q with

the Hooke's Law

11 a11  a12  a13  0 0 0 Cu

'22 a21 a22 a23 0 0 0 C 22

"33 a., a32 a33 0 0 0 C3333 31 3233
(2.1) T12  0 0 0 a4 4  0 0 12

T 13 0 0 0 0 a., 0 7'13

T231 0 0 0 0 0 a6 6  •23.

where oij,ij are the normal and tangential stresses, respectively, c j'

TiJ are the strain components, and ui, I = 1,2,3 u = (U,U 2 u 3 ) denote

the displacements.

For isotropic materials we have A = {ajj}, i,J - 1 .... 6 with

a =a 22  a 3 3 =A+2 = (1 %1 - 2)E

A PE
12 =a 13 =a 23 =a 2 1 =a 3 1 =a 3 2 =A=(1+ V)(I- 2U)'

E

a44= a., a 66 2= ( I 2 ( +v

A,/i are the Lam constants, E is the modulus of elasticity and u is the

Poisson ratio. As usual, the strain energy Is

(22 C A (u = + (0 C dx

(2.2) A 11 11 +022£22 +' 3 3 '3 3 +T 2 1 2 +' t 13 13 +T 2 3 "2 3)

where the stress-strain relations in (2.2) are governed by (2.1) with the

matrix A = (a I}. A Is used as an upper index in the expression (2.2) to

emphasize this dependence.

We will assume that the plate Is homogeneous, i.e. that a j are

constants. Further we will assume that half of the load q(x 1 ,x2) is on R+

and half on R . The total energy Is then

(2.3) GA (u) = CA (u) Q(u)
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where

(2.5) Q(u) = (uxx 29,) + x , x

The exact solution u = (u1 ,u2 ,u3 ) of the plate problem is the

minimizer of GA(u) over the subspace R(Q) c (H(o ))3  where R(f2)

constraints (H1 (fl)) 3  on S (not on R+). The boundary conditions of the

plate problem are uniquely characterized by 3() (respectively the

constraints of (H1 ()) 3  on S).

Let now n = (nl.n2 n), n, -: 0 integer. Then by the solution of the

B =n (n) uB (n B of)
n-model we will understand the minimizer B(n) L (n) B (n) Bo(n)

G B(u) over the subspace X(n) c U(Q) of all functions of the form
n1

(2.6) u(n) (x)= Z uj(Xlx 2 )(X] , I = 1,2,3

J=O

and the matrix B = {b j} is used as Hooke's law. In general, B * A.

Because of our symmetry assumptions we made earlier we have

ul,j = u2,j =0 for j even

and u3,j =0 for j odd.

B (n)The solution un, is the approximation of the exact solution u of the

three dimensional problem.

We can use various n for the approximate solution and study the rate

of convergence measured in the energy nor,. as d--0. More precisely, we

define

A B B(n) 11/2
(2.7) c(d) C (ud) - C ( U/

C Aud)

where by the lower index d we express the dependence of the solution on d.

Assuming B = A, A is Isotropic Hooke's law and the solution is smooth, then

3



c(d) = Cda where a (the rate of convergence) is shown in Table 3.1 for

n= n2 . We have to distinguish between the two cases P = 0 and u > 0.

Table 3.1 The rate of convergence a

a) > 0

n I = n2  1 1 3 3

n3  0 2 2 4

0 1 2 3

b) v =0

n I =n 2  1 1 3 3

n3  0 2 2 4

1 1 2 3

For more details see [1].

We see that the model (1,1,0) is not admissible for v * 0 because it

does not lead to convergent solutions (a = 0). Nevertheless, using a

modified A, i.e. replacing A by B. we get the value a = 1 again.

This modification leads to the well known Reissner-Mindlin model which will

be discussed in Section 3.

Let us consider a unit square plate of thickness d,

={ XX 3 I lxi < 0.5, i = 1,2, lx3 < d and assume that the plate12'3 1 < S'x3l <

Is simply supported, with hard support and is uniformly loaded. We assume

that the plate is isotropic, homogeneous, with a Poisson's ratio u = 0.3

and the modulus of elasticity E = 10 . The solution of the n-model with n

small Is smooth and essentially has no boundary layer (in contrast to the

soft simple support).

4



In Table 3.2 we show the strain energy for the three dimensional

solution, the RM model (K = 0.87) and the (1,1,2) model (as discussed

later).

Table 3.2 The convergence of the RM and (1,1,2) solutions

d 3DIM RM, K =_ 0.87 CRM (1,1,2) C112

0.10 0.242115(-6) 0.245521(-6) 11.8% 0.240433(-6) 8.3%

0.025 0.149115(-4) 0.149256(-4) 3.07% 0.149049(-4) 2.10%

0.01 0.232489(-3) 0.232524(-3) 1.2% 0.232472(-3) 0.85%

By CRM and c112 we denoted the error defined by (2.7) for the RM and n =

(1,1,2) model. We clearly see the predicted rate of convergence.

For more detailed analyses of various boundary conditions we refer to [2].

3. The Reissner-Mindlin model for homogeneous Isotropic materials.

The well-known Reissner-Mindlin model Is described by the following

system of differentiable equations for = (VI,02) and :

ax Kpid 1 + = 0

Lax 
2  2- +j

Kgd(Aw + . + q = C

where

Ed
3

D=2

12(1 -l2

E
= 2(1 +

and 0 < K S 1 Is a shear factor.

I5 m



Here V# denotes the rotation vector and i is the displacement in the

vertical direction.

Further we define

H 11 =D8X+ Y2

K Dr (ao + a2
H22 = D 1a, 8 2]

t~x1 1
1

22 ax, x2j

P2= qD + 31 -R
(3 2)1-L' D f8 0 1 + 021(2)M21 =M12 2 La tX2 Y XlJ

0 = Kjld V8- 2 + 02]

where M1 j, i,J = 1,2 are the momeits and Q3J' J = 1,2 are the shear"

forces.

Let n and s be the unit normal and right oriented tangential vectors

to r respectively. Denote further @n = 'n, *s = $.s and define Mnn

Hs, and Ms according to (3.2) replacing x1  by n and x2  by s

similarly for %n and s

At the boundar;,, three boundary conditions have to be specified. For

example:

i) Clamped plate 2

ii) Soft simple support o= 0, = h = 0
nn ns

i i i) Hard simple support = =0, On = 0
iv) free M = = =0

I v ) f e e Mn n = M n s = Q 3 n =

and analogously the others.

The Reissner-Mindlin (RM) model was derived using various mechanical

principles. It has been shown (see e.g. [3]) that as d--0 the solution

of the RM model converges to the solution of the three-dimensional model in

6



the (scaled) energy norm.

Let us define B = {b}, i,j = I... 6 with

A1+211  A1  0 0 0 0

A1  A1+2wl 0 0 0 0

0 0 A +21  0 0 0

0 0 0 1 0 0

0 0 0 0 K2 0

0 0 0 0 0 K IJ

where

A1  = E 1 1  
; - E,

(I + )I - 2v 1 2(1 + vI )

v E 1= E(I + 2u)I = !l+ E1 (1+V 2

and denote by Bu the minimizer of G B(u) (see (2.3)) when u has the form

(2.6) with n I = n2 = 1, n3 = 0 and R(M) is defined accordingly.

For example in the case of:

1 3
1) clamped plate : I) = (u e (H (0)) u = 0 on S}

ii) soft simple support : M() = {u e (H1 (M) 3 , u3 = 0 on S}

iii) hard simple support : M() = {u E (H ()) 3 , (Ulu 2).s = 0,

u =0 , on 5)

iv) free plate : R(M) = {u E (H 1()) }

B B B
Let now , and Ti, j  be the stresses computed from u by using

Hooke's matrix B and define
d/2

BM = 1 x 3dx3

-d, 2

d/2
B M22 = r 22x3 dx3

-d/2

7



d/2
(3.3) BM = f T 12 x 3d 3

-d/2

B% -- { T 3 1dx 3
-d/2

d/2
B Q 2 = [ 32dx 3

-d/2

Now it is noc hard to prove the following:

Theorem 1. We have with (3.2) and (3.3)

BH
M = MIJ I = 1,2

B

Q31 1 1=1,2

and

B B B
= u3,0' , = ui ,1, 02 = 2,

where Mii' Q1, 1  are the Reis-ner-Mindlin moments and shear forces from

(3.2). The proof Is based on the comparison of the bil'near forms for the

variational formulation of the RM model and the (1,1,0) model.

We remark that for v = 0, the matrices A and B are identical.

4. The Reissner-Mindlin model for homogeneous orthotropic plate.

Let the Hooke's law for the orthotropic material is

8



1 -V21 231 0 0 0
11 Ell E2 2  E 3 3

L 1 2  1 V32 0 0 0£22 Ell E22 E3 0 '22

C U113 -V23 1 0 0 0 3£33 Ell E22 0 0 0 033

(4.1) 0 0 0 G- 1 0 T
'12 12 T12

713 0 0 0 0 G-  0 0
331 13

'23 0 0 0 0 0 G- T

32 J 23 J

where v E1 1  Ell E22 We can write also
12 21 E' 13 31 E33' 23 32 E

(4.1) in the form of (2.1).

Following [4] the system of d'fferential equations analogous to

equation (3.1) for $ = (0j1,02 ) and w is

d 3 C, o a 0, d 3 a fa~i kb_ 8aio K01 ax jj 31 -! d12 x 11 12 8x2  12 12 5x- 28x I8x 2  -LX d 311 x 1

d3  a 8@_ g a, 1l d3  a [ a- ao2, + a 1
12 12 ax1 La-i1 ax 2J 1 ax 2 (C21 22ax 2 J 32 2 aX 2 J =

dG a + a al a ' + q 0
31 3x 1 Kc 3 2 a 2 + 5X2j

where

C = {c } i,J, = 1,2

c1=! 1 2]C-1 Ell E22

The analog to (3.2) Is

9



M d3 (C ,/-L + C 2j

11 1-2 11  x 12 xJ

H22 12 21 C22 8Jx)

d3  ra0.2 3011
(4.2) = H1 2 = 12 G12 Lax1 I -J

Q31 = HdG3 La-- + 1
%1~d 3 1 r, 1)

ILdam~

Q32 = Gd32 1a-2 + 02)

and nn, H, Mss, %n' %s' are defined accordingly

C11 C12 0 0 0 0

C2 1 C2 2  0 0 0 0

0 0 E33 0 0 0
0 0 0 G12 0 0

0 0 0 0 KG31 0

0 0 0 0 0 KG 3 2

Denoting by 01, 02' w the solution of the Reissner-Mindlin equation for

B Bgiven boundary conditions and by u the minimizer of G, then, as in the

previous section the Theorem 1 also holds. The proof is analogous.

5. The general anisotropic case.

Consider the general case of the Hooke's law defined by (2.1). Then if

the matrix B = {b ij} Is such that

bij a a 3a31  I,J = 1,2,4
1,] , a33

b31 =b 3 2 =b 13 =b 2 3 =b 3 4 =b 4 3 =0

b33 =a 33

b = Ka , I,J = 5,6

10



Then once more Theorem 1 holds. The proof is analogous.

6. The h- version of the finite element method.

Let the domain w be partitioned Into two-dimensional straight or

curvilinear triangular or quadrilateral (two-dimensional) elements e I in
d d

x x2  plane. Then the three dimensional elements are e1 x (-' 2) The h-p

version which is implemented in MSC/PROBE and STRIPE program uses polynomials

of degree q (for u,, I = 1,2,3) In the x3 direction and polynomials of

degree p In x Ix2 plane with p 2 q. For quadrilateral elements both

programs use the serendipity elements In the x1x 2  plane.

The elements of the p,q type are used. Then for fixed q and for

p--- (or when the size of elements eI converges to zero) we get the

solution of the n-model with n = (q,q,q). This model in the case of

symmetrical load is equivalent with the model n = (n1,n 2, n 3), nI = n2
q3

2ql- 1 and n 3 = 2[f] where by [a] we denote the integral part of

a. It is also possible to use different q in different elements. Various

material properties, Isotropic, anisotropicare available in the programs.

Hence as has been shown in previous sections the RM model is obtained by

properly adjusting the Hooke's law matrix.

Let us consider the case of the unit square with hard simple support

which is uniformly loaded. We will use the RM and (1,1,2) model. Let us be

interested ii the locking problem i.e. the convergence of the h-version

using xIx 2 plane elements of various degrees.

Consider a sequence of uniform square meshes with element size h. In

Figure 6.1abc we show the error (measured in the energy norm) as a function of

h for various h and various degrees of

elements p. In the figure we also depict the slope of the asymptotic

11



error rate hS.

100- 100

"-~~~~ P=1h' --
- o.j----- s-- -" j. 1 j. p= "= 10 I = 10 i

10 L
=3 '-t4 ,H

I ~ . -
2  34

> p. 0.1 p>
E0.1-* E-4 01 5p

1/4 1/8 112 1/16 1/4 118 1112 V16

Q

S100 P=1I00 p =2

C9 10

I

i

1/4 1/8 1/12 1/16

C.

Figure 6.1I The convergence of the h-version for the RM model. a: d =0.1I,

b: d =0.025, c: d - 0.01

We see that for d 0.1 the ate of convergence Is (p) -p. For d=

0.01 we see (l) , (p) < p, p a 2,3, but (4) -4 as for d = 0.01.

The lower rate effect Is the typical locking phenomenon. For d -0.025 we

see locking for p - 1,2 but for p a 3 the locking Is essentially not

present.

12
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Figure 6.2ab shows the typical locking for the p-version. We see here

once more that for increasing p there Is no difference between d - 0.01

and d - 0.1 i.e. that the p-version is locking free.

d=1/110 _=1_/10

100 1 ' 100-

10 10

S-"- = +,

0.1 0.1 h

01 2 V3

' ' ",h' 1/8 + h =1/12

h p12 0.01
- O.1 2 3 4 1- O. 3 4

Ck I's

Figure 6.2 The convergence of the p-version for the RM model, a: d = 0.1,

b: d = 0.01

Figure 6.3abc shows performance of the h version for the model (1,1,2)

as a function of p, analogously as before. We see quite analogous results.

Hence for p a 4 the method is locking free also here.

In [5] we have addressed the general model of locking. We have

underlined that often the deterioration of the finite element method is the

combined effect of locking and decreasing regularity of the solution. Hence

it is essential to guarantee that the regularity of the solutions Is

essentially uniform with respect to the parameter (in our case d) of

interest. We have for this reason selected the hard simple support.

In the case of the model (3,3,4) the solution of the hard simple

support is not any more sufficiently smooth any more and the locking is not

13



the min factor influencing the convergence rate. This leads to the exactly

1 00 i  
100 1p=22,

10 10 *=

10 -4.. = o .---- 2
.2 =- A _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __,.

1 p  -=3 " . - ... . ---- 1"
2

~0.1.E- 0.1 E- 0.1

0.01* T

1/4 i/8 1.112 1/16 114 1/8 1112 1116
Sh -'- o h --

100 i I _

0 10 2 -

E- 0 1 ' . ,

1/4 1/8 1/12 1/16

Figure 6.3 The convergence of the h-version for the (1,1,2) model, a: d =

0.1, b: d 0.025 d - 0.01.

opposite character we have seen above. For d larger we see smaller rate of

convergence than for d smaller. In Figure 6.4 we show the error as a

function of h for p - 4. It clearly indicates the effect of the

regularity of the solutions for various d. The effect of the unsmoothness

of the solution for d - 0.1 can be seen by comparing the accuracy obtained

for different meshes. In the Table 6. 1 we show the error for various meshes

14



of 16 elements for d - 0.1 and d = 0.01. These meshes are characterized by

coordinates x1 2 0.

We see that for d - 0.1 the uniform mesh (No. 1) leads to a larger

error while a refined mesh (No. 2) leads to a smaller one. On the other hand

the uniform mesh (with 16 elements) for d = 0.01 is the optimal one. This

clearly explains Figure 6.4 where the rate of convergence for d - 0.1 is

smaller (in our range) than for d = 0.01, which is opposite what has been

seen for the RH and (1,1,2) model before.

10

d =0.01 d0
+'. - 0''0 1  d =0.i

0.1

E- d=0.025

0.01' _ _ _ _

1/4 1/8 1/12

- h -

Figure 6.4 The convergence of the h-version for the (3,3,4) model.

Table 6.1 The energy error for the model (3,3,4) and element of degree 4

15



COORDINATES ERROR X

No x0  x1  x2  x3  x4  d - 0.1 d - 0.01

1 0 0.125 0.25 0.375 0.50 0.482 0.209

2 0 0.20 0.38 0.45 0.50 0.273 0.434

3 0 0.16 0.32 0.43 0.50 0.315 ---

4 0 0.30 0.45 0.49 0.50 0.407
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